

1. Consider the improper integral $\int_{-\infty}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x$.
(a) Are there any discontinuities for the function $f(x)=\frac{e^{x}}{1+e^{2 x}}$ within the range of the limits of integration?
(b) Rewrite the improper integral using limit notation. Note that it may be easier to use $x=0$ as a reference point.
(c) Evaluate the improper integral.
(d) Does the improper integral converge or diverge?
2. Consider the improper integral $\int_{0}^{\infty} e^{-x} d x$.
(a) Are there any discontinuities for the function $f(x)=e^{-x}$ within the range of the limits of integration?
(b) Rewrite the improper integral using limit notation.
(c) Evaluate the improper integral.
(d) Does the improper integral converge or diverge?
3. Consider the improper integral $\int_{0}^{1} \frac{1}{\sqrt[3]{x}} d x$.
(a) Are there any discontinuities for the function $f(x)=\frac{1}{\sqrt[3]{x}}$ within the range of the limits of integration?
(b) Rewrite the improper integral using limit notation.
(c) Evaluate the improper integral.
(d) Does the improper integral converge or diverge?
4. What happens when you evaluate $\int_{0}^{\infty} \frac{1}{x} d x$? How about $\int_{1}^{\infty} \frac{1}{x} d x$? And $\int_{0}^{1} \frac{1}{x} d x$?
