Facts about Improper	Explanation
Integrals	
What is an Improper	An improper integral is one in which the interval of
Integral? When does an	integration is unbounded or the integrand has a
Improper Integral Converge	discontinuity at some point in the interval of
or Diverge?	integration. If the value of the improper integral is a
	finite number, then the improper integral converges.
	Otherwise, it diverges.
Rewriting an Improper	Let a, b be any number in the interval of integration
Integral using Limits in	(including the endpoints) and c be a discontinuous
Order to Compute its	point for $f(x)$ within the interval of integration.
Value.	$\underline{\text{Case 1:}}$
	$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$
	$\underline{\text{Case } 2}$:
	$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$
	<u>Case 3:</u>
	$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$
	Case 4 :
	$\int_{a}^{c} f(x) dx = \lim_{t \to c^{-}} \int_{a}^{t} f(x) dx$
	$\underline{\text{Case 5:}}$
	$\int_{c}^{b} f(x) dx = \lim_{t \to c^{+}} \int_{t}^{b} f(x) dx$
	<u>Case 6:</u>
	$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$

- 1. Consider the improper integral $\int_{-\infty}^{\infty} \frac{e^x}{1+e^{2x}} dx$.
 - (a) Are there any discontinuities for the function $f(x) = \frac{e^x}{1 + e^{2x}}$ within the range of the limits of integration?
 - (b) Rewrite the improper integral using limit notation. Note that it may be easier to use x = 0 as a reference point.
 - (c) Evaluate the improper integral.

- (d) Does the improper integral converge or diverge?
- 2. Consider the improper integral $\int_0^\infty e^{-x} dx$.
 - (a) Are there any discontinuities for the function $f(x) = e^{-x}$ within the range of the limits of integration?
 - (b) Rewrite the improper integral using limit notation.
 - (c) Evaluate the improper integral.

(d) Does the improper integral converge or diverge?

- 3. Consider the improper integral $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$.
 - (a) Are there any discontinuities for the function $f(x) = \frac{1}{\sqrt[3]{x}}$ within the range of the limits of integration?
 - (b) Rewrite the improper integral using limit notation.

(c) Evaluate the improper integral.

(d) Does the improper integral converge or diverge?

4. What happens when you evaluate
$$\int_0^\infty \frac{1}{x} dx$$
? How about $\int_1^\infty \frac{1}{x} dx$? And $\int_0^1 \frac{1}{x} dx$?